Step-size parameter adaptation of multi-channel semi-blind ICA with piecewise linear model for barge-in-able robot audition

Ryu Takeda*, Kazuhiro Nakadai, Toru Takahashi, Kazunori Komatani, Tetsuya Ogata, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

This paper describes a step-size parameter adaptation technique of multi-channel semi-blind independent component analysis (MCSB-ICA) for a "barge-in-able" robot audition system. By "barge-in", we mean that the user can speak simultaneously when the robot is speaking. We focused on MCSB-ICA to achieve such an audition system because it can separate a user's and a robot's speech under reverberant environments. The problem with MCSB-ICA for robot audition is the slow speed of convergence in estimating a separation filter due to its step-size parameters. Many optimization methods cannot be adopted because their computational costs are proportional to the 2nd order of the reverberation time. Our method yields adaptive step-size parameters with MCSB-ICA at low computational costs. It is based on three techniques; 1) recursive expression of the separation process, 2) a piecewise linear model of the step-size of the separation filter, and 3) adaptive step-size parameters with a sub-ICA-filter. Experimental results show that our approach attains faster convergence speed and lower computational costs than those with a fixed step-size parameter.

本文言語English
ホスト出版物のタイトル2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
ページ2277-2282
ページ数6
DOI
出版ステータスPublished - 2009 12月 11
外部発表はい
イベント2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 - St. Louis, MO, United States
継続期間: 2009 10月 112009 10月 15

出版物シリーズ

名前2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009

Conference

Conference2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
国/地域United States
CitySt. Louis, MO
Period09/10/1109/10/15

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用
  • 制御およびシステム工学

フィンガープリント

「Step-size parameter adaptation of multi-channel semi-blind ICA with piecewise linear model for barge-in-able robot audition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル