Stochastic node caching for memory-bounded search

Teruhisa Miura, Toru Ishida

研究成果: Paper査読

10 被引用数 (Scopus)

抄録

Linear-space search algorithms such as IDA* (Iterative Deepening A*) cache only those nodes on the current search path, but may revisit the same node again and again. This causes IDA* to take an impractically long time to find a solution. In this paper, we propose a simple and effective algorithm called Stochastic Node Caching (SNC) for reducing the number of revisits. SNC caches a node with the best estimate, which is currently known of the minimum estimated cost from the node to the goal node. Unlike previous related research such as MREC, SNC caches nodes selectively, based on a fixed probability. We demonstrate that SNC can effectively reduce the number of revisits compared to MREC, especially when the state-space forms a lattice.

本文言語English
ページ450-456
ページ数7
出版ステータスPublished - 1998 1 1
外部発表はい
イベントProceedings of the 1998 15th National Conference on Artificial Intelligence, AAAI - Madison, WI, USA
継続期間: 1998 7 261998 7 30

Other

OtherProceedings of the 1998 15th National Conference on Artificial Intelligence, AAAI
CityMadison, WI, USA
Period98/7/2698/7/30

ASJC Scopus subject areas

  • ソフトウェア
  • 人工知能

フィンガープリント

「Stochastic node caching for memory-bounded search」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル