Streaming end-to-end ASR based on blockwise non-autoregressive models

Tianzi Wang, Yuya Fujita, Xuankai Chang, Shinji Watanabe

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Non-autoregressive (NAR) modeling has gained more and more attention in speech processing. With recent state-of-the-art attention-based automatic speech recognition (ASR) structure, NAR can realize promising real-time factor (RTF) improvement with only small degradation of accuracy compared to the autoregressive (AR) models. However, the recognition inference needs to wait for the completion of a full speech utterance, which limits their applications on low latency scenarios. To address this issue, we propose a novel end-to-end streaming NAR speech recognition system by combining blockwiseattention and connectionist temporal classification with maskpredict (Mask-CTC) NAR. During inference, the input audio is separated into small blocks and then processed in a blockwise streaming way. To address the insertion and deletion error at the edge of the output of each block, we apply an overlapping decoding strategy with a dynamic mapping trick that can produce more coherent sentences. Experimental results show that the proposed method improves online ASR recognition in low latency conditions compared to vanilla Mask-CTC. Moreover, it can achieve a much faster inference speed compared to the AR attention-based models. All of our codes will be publicly available at https://github.com/espnet/espnet.

本文言語English
ホスト出版物のタイトル22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
出版社International Speech Communication Association
ページ1421-1425
ページ数5
ISBN(電子版)9781713836902
DOI
出版ステータスPublished - 2021
外部発表はい
イベント22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 - Brno, Czech Republic
継続期間: 2021 8月 302021 9月 3

出版物シリーズ

名前Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
2
ISSN(印刷版)2308-457X
ISSN(電子版)1990-9772

Conference

Conference22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
国/地域Czech Republic
CityBrno
Period21/8/3021/9/3

ASJC Scopus subject areas

  • 言語および言語学
  • 人間とコンピュータの相互作用
  • 信号処理
  • ソフトウェア
  • モデリングとシミュレーション

フィンガープリント

「Streaming end-to-end ASR based on blockwise non-autoregressive models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル