Strong solutions to compressible–incompressible two-phase flows with phase transitions

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We consider a free boundary problem of compressible–incompressible two-phase flows with phase transitions in general domains of N-dimensional Euclidean space (e.g. whole space; half-spaces; bounded domains; exterior domains). The compressible fluid and the incompressible fluid are separated by either compact or non-compact sharp moving interface, and the surface tension is taken into account. In our model, the compressible fluid and incompressible fluid are occupied by the Navier–Stokes–Korteweg equations and the Navier–Stokes equations, respectively. This paper shows that for given T>0 the problem admits a unique strong solution on (0,T) in the maximal Lp−Lq regularity class provided the initial data are small in their natural norms.

本文言語English
論文番号103101
ジャーナルNonlinear Analysis: Real World Applications
54
DOI
出版ステータスPublished - 2020 8

ASJC Scopus subject areas

  • 分析
  • 工学(全般)
  • 経済学、計量経済学および金融学(全般)
  • 計算数学
  • 応用数学

フィンガープリント

「Strong solutions to compressible–incompressible two-phase flows with phase transitions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル