TY - JOUR
T1 - Structure and gelation mechanism of tunable guanosine-based supramolecular hydrogels
AU - Li, Zheng
AU - Buerkle, Lauren E.
AU - Orseno, Maxwell R.
AU - Streletzky, Kiril A.
AU - Seifert, Soenke
AU - Jamieson, Alexander M.
AU - Rowan, Stuart J.
PY - 2010/6/15
Y1 - 2010/6/15
N2 - The mechanism of gelation of 50/50 w/w mixtures of guanosine (G) and 2′,3′,5′-tri-O-acetylguanosine (TAcG) in aqueous 0.354 M KCl was investigated using a combination of static light scattering (SLS), polarized and depolarized dynamic light scattering (VV and VH DLS), small-angle neutron and X-ray scattering (SANS and SAXS), and viscometric experiments. SLS and viscometry show a dramatic increase in apparent molecular weight and hydrodynamic volume at 0.2 wt % and 0.3 wt %, respectively, indicating the critical concentration for self-association of G/TAcG quartets into columnar assemblies lies below 0.2 wt %. Above this concentration, SANS and SAXS generate complementary information on the structure of the individual columnar stacks. VV and VH DLS results indicate bimodal correlation functions, whose properties suggest, respectively, translational and rotational diffusion of a bimodal distribution of particles. The fast mode appears to originate from fibrillar agglomerates of G/TAcG columnar quartet assemblies, while the slow mode comes from microgel domains. Guinier plot analysis of the SLS data probes the internal structure of the microgel domains. Collectively, the results suggest that sol and microgel phases coexist below the macroscopic gel point, and that the sol phase contains individual columnar stacks of G/TAcG quartets and fibrillar aggregates formed via lateral aggregation of these columnar assemblies. With increasing concentration, the DLS data indicate a progressive increase in the volume fraction of microgel domains, which ultimately leads to macroscopic gelation. Prior observation of a transient network contribution to the gel rheology at low temperature is attributed to the presence of individual columnar stacks within the gel network.
AB - The mechanism of gelation of 50/50 w/w mixtures of guanosine (G) and 2′,3′,5′-tri-O-acetylguanosine (TAcG) in aqueous 0.354 M KCl was investigated using a combination of static light scattering (SLS), polarized and depolarized dynamic light scattering (VV and VH DLS), small-angle neutron and X-ray scattering (SANS and SAXS), and viscometric experiments. SLS and viscometry show a dramatic increase in apparent molecular weight and hydrodynamic volume at 0.2 wt % and 0.3 wt %, respectively, indicating the critical concentration for self-association of G/TAcG quartets into columnar assemblies lies below 0.2 wt %. Above this concentration, SANS and SAXS generate complementary information on the structure of the individual columnar stacks. VV and VH DLS results indicate bimodal correlation functions, whose properties suggest, respectively, translational and rotational diffusion of a bimodal distribution of particles. The fast mode appears to originate from fibrillar agglomerates of G/TAcG columnar quartet assemblies, while the slow mode comes from microgel domains. Guinier plot analysis of the SLS data probes the internal structure of the microgel domains. Collectively, the results suggest that sol and microgel phases coexist below the macroscopic gel point, and that the sol phase contains individual columnar stacks of G/TAcG quartets and fibrillar aggregates formed via lateral aggregation of these columnar assemblies. With increasing concentration, the DLS data indicate a progressive increase in the volume fraction of microgel domains, which ultimately leads to macroscopic gelation. Prior observation of a transient network contribution to the gel rheology at low temperature is attributed to the presence of individual columnar stacks within the gel network.
UR - http://www.scopus.com/inward/record.url?scp=77956081801&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956081801&partnerID=8YFLogxK
U2 - 10.1021/la100211y
DO - 10.1021/la100211y
M3 - Article
C2 - 20384308
AN - SCOPUS:77956081801
VL - 26
SP - 10093
EP - 10101
JO - Langmuir
JF - Langmuir
SN - 0743-7463
IS - 12
ER -