Subexponential instability in one-dimensional maps implies infinite invariant measure

Takuma Akimoto, Yoji Aizawa

研究成果: Article査読

20 被引用数 (Scopus)

抄録

We characterize dynamical instability of weak chaos as subexponential instability. We show that a one-dimensional, conservative, ergodic measure preserving map with subexponential instability has an infinite invariant measure, and then we present a generalized Lyapunov exponent to characterize subexponential instability.

本文言語English
論文番号033110
ジャーナルChaos
20
3
DOI
出版ステータスPublished - 2010 7 13

ASJC Scopus subject areas

  • Applied Mathematics
  • Physics and Astronomy(all)
  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Subexponential instability in one-dimensional maps implies infinite invariant measure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル