TY - JOUR
T1 - Superoxide dismutase derivative preve in liver and kidney of rats induced by E
AU - Radák, Zsolt
PY - 1996/12/1
Y1 - 1996/12/1
N2 - To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TEARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TEARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.
AB - To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TEARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TEARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.
KW - Exercise
KW - Lipid peroxidation
KW - Liver/kidney
KW - Oxidative stress
KW - Superoxide dismutase derivative
UR - http://www.scopus.com/inward/record.url?scp=0030046645&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030046645&partnerID=8YFLogxK
M3 - Article
C2 - 8820884
AN - SCOPUS:0030046645
VL - 72
SP - 189
EP - 194
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
SN - 1439-6319
IS - 3
ER -