Superstrong and other large cardinals are never Laver indestructible

Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals (all for n ≥  3) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing (Formula presented.), the cardinal κ will exhibit none of the large cardinal properties with target θ or larger.

本文言語English
ページ(範囲)19-35
ページ数17
ジャーナルArchive for Mathematical Logic
55
1-2
DOI
出版ステータスPublished - 2016 2 1

ASJC Scopus subject areas

  • Philosophy
  • Logic

フィンガープリント 「Superstrong and other large cardinals are never Laver indestructible」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル