Support Vector Machine-Based Phase Prediction of Multi-Principal Element Alloys

Nguyen Hai Chau*, Masatoshi Kubo, Le Viet Hai, Tomoyuki Yamamoto

*この研究の対応する著者

研究成果: Article査読

抄録

Designing new materials with desired properties is a complex and time-consuming process. One of the most challenging factors of the design process is the huge search space of possible materials. Machine learning methods such as k-nearest neighbors, support vector machine (SVM) and artificial neural network (ANN) can contribute to this process by predicting materials properties accurately. Properties of multi-principal element alloys (MPEAs) highly depend on alloys' phase. Thus, accurate prediction of the alloy's phase is important to narrow down the search space. In this paper, we propose a solution of employing SVM method with hyperparameters tuning and the use of weighted values for prediction of the alloy's phase. Using the dataset consisting of the experimental results of 118 MPEAs, our solution achieves a cross-validation accuracy of 90.2%. We confirm the superiority of this score over the performance of ANN statistically. On the other dataset containing 401 MPEAs, our SVM model is comparable to ANN and exhibits 70.6% cross-validation accuracy. We also found that additional variables, including average melting temperature and standard deviation of melting temperature, increase prediction accuracy by 3.34% in the best case.

本文言語English
ジャーナルVietnam Journal of Computer Science
DOI
出版ステータスAccepted/In press - 2022

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ サイエンス(その他)
  • 情報システム
  • コンピュータ ビジョンおよびパターン認識
  • 計算理論と計算数学
  • 人工知能

フィンガープリント

「Support Vector Machine-Based Phase Prediction of Multi-Principal Element Alloys」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル