Support vector machine with SOM-based quasi-linear kernel for nonlinear classification

Yuling Lin*, Yong Fu, Jinglu Hu

*この研究の対応する著者

研究成果: Conference contribution

抄録

This paper proposes a self-organizing maps (SOM) based kernel composition method for the quasi-linear support vector machine (SVM). The quasi-linear SVM is SVM model with quasi-linear kernel, in which the nonlinear separation hyperplane is approximated by multiple local linear models with interpolation. The basic idea underlying the proposed method is to use clustering and projection properties of SOM to partition the input space and construct a SOM based quasi-linear kernel. By effectively extracting the distribution information using SOM, the quasi-linear SVM with the SOM-based quasi-linear kernel is expected to have better performance in the cases of high-noise and high-dimension. Experiment results on synthetic datasets and real world datasets show the effectiveness of the proposed method.

本文言語English
ホスト出版物のタイトルProceedings of the International Joint Conference on Neural Networks
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3783-3789
ページ数7
ISBN(電子版)9781479914845
DOI
出版ステータスPublished - 2014 9月 3
イベント2014 International Joint Conference on Neural Networks, IJCNN 2014 - Beijing, China
継続期間: 2014 7月 62014 7月 11

出版物シリーズ

名前Proceedings of the International Joint Conference on Neural Networks

Conference

Conference2014 International Joint Conference on Neural Networks, IJCNN 2014
国/地域China
CityBeijing
Period14/7/614/7/11

ASJC Scopus subject areas

  • ソフトウェア
  • 人工知能

フィンガープリント

「Support vector machine with SOM-based quasi-linear kernel for nonlinear classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル