Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent in a Biphasic System

Takeshi Sugaya, Masahiko Ozaki, Régis Guégan, Naokazu Idota, Yoshiyuki Sugahara*

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Oleyl phosphate-modified HLaNb 2 O 7 ·xH 2 O nanosheets (OP-HLaNb nanosheets) were prepared via phase transfer from an aqueous phase, comprising a dispersion of HLaNb 2 O 7 ·xH 2 O (HLaNb) nanosheets, formed through the intercalation of tetrabutylammonium ion (TBA + ) in the interlayer space of HLaNb and subsequent delamination, to a cyclohexane phase containing oleyl phosphate (OP, a mixture of monoester and diester). The modification of HLaNb nanosheets with OP was essentially completed within 3 days at a pH value of 2 or 4. Both infrared and solid-state 13 C cross-polarization and magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of the OP-HLaNb nanosheets showed the presence of OP and/or related species and TBA + on the HLaNb nanosheet surface. The solid-state 31 P MAS NMR spectra of OP-HLaNb nanosheets exhibited new signals at -2 and 0 ppm, the former of which indicates the formation of Nb-O-P bonds. These whole data set obtained by complementary techniques clearly point out the modification of the HLaNb nanosheet surface by OP moieties causing a phase transfer. OP-HLaNb nanosheets showed higher dispersibility in cyclohexane than the OP-HLaNb-interlayer nanosheets, which were prepared via stepwise substitution reactions in the interlayers of HLaNb to achieve surface modification with OP and subsequent exfoliation in cyclohexane. The presence of TBA + on the HLaNb nanosheets and the use of a liquid-liquid biphasic system were likely to improve the dispersibility. These results show that the preparation of OP-modified HLaNb nanosheets which could be well-dispersed in the cyclohexane phase was successful because of the use of a liquid-liquid biphasic system.

本文言語English
ジャーナルLangmuir
DOI
出版ステータスPublished - 2019 1月 1

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 表面および界面
  • 分光学
  • 電気化学

フィンガープリント

「Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent in a Biphasic System」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル