Surfaces in 4-manifolds and their mapping class groups

Susumu Hirose*, Akira Yasuhara

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

A surface in a smooth 4-manifold is called flexible if, for any diffeomorphism φ{symbol} on the surface, there is a diffeomorphism on the 4-manifold whose restriction on the surface is φ{symbol} and which is isotopic to the identity. We investigate a sufficient condition for a smooth 4-manifold M to include flexible knotted surfaces, and introduce a local operation in simply connected 4-manifolds for obtaining a flexible knotted surface from any knotted surface.

本文言語English
ページ(範囲)41-50
ページ数10
ジャーナルTopology
47
1
DOI
出版ステータスPublished - 2008 1月
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Surfaces in 4-manifolds and their mapping class groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル