Survey on geometric iterative methods and their applications

Hongwei Lin*, Takashi Maekawa, Chongyang Deng

*この研究の対応する著者

研究成果: Article査読

41 被引用数 (Scopus)

抄録

Geometric iterative methods (GIM), including the progressive–iterative approximation (PIA) and the geometric interpolation/approximation method, are a class of iterative methods for fitting curves and surfaces with clear geometric meanings. In this paper, we provide an overview of the interpolatory and approximate geometric iteration methods, present the local properties and accelerating techniques, and show their convergence. Moreover, because it is easy to integrate geometric constraints in the iterative procedure, GIM has been widely applied in geometric design and related areas. We survey the successful applications of geometric iterative methods, including applications in geometric design, data fitting, reverse engineering, mesh and NURBS solid generation.

本文言語English
ページ(範囲)40-51
ページ数12
ジャーナルCAD Computer Aided Design
95
DOI
出版ステータスPublished - 2018 2月
外部発表はい

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 産業および生産工学

フィンガープリント

「Survey on geometric iterative methods and their applications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル