Symmetric ground states for doubly nonlocal equations with mass constraint

Silvia Cingolani*, Marco Gallo, Kazunaga Tanaka

*この研究の対応する著者

研究成果: Article査読

抄録

We prove the existence of a spherically symmetric solution for a Schrödinger equation with a nonlocal nonlinearity of Choquard type. This term is assumed to be subcritical and satisfy almost optimal assumptions. The mass of of the solution, described by its norm in the Lebesgue space, is prescribed in advance. The approach to this constrained problem relies on a Lagrange formulation and new deformation arguments. In addition, we prove that the obtained solution is also a ground state, which means that it realizes minimal energy among all the possible solutions to the problem.

本文言語English
論文番号1199
ジャーナルSymmetry
13
7
DOI
出版ステータスPublished - 2021 7

ASJC Scopus subject areas

  • コンピュータ サイエンス(その他)
  • 化学(その他)
  • 数学 (全般)
  • 物理学および天文学(その他)

フィンガープリント

「Symmetric ground states for doubly nonlocal equations with mass constraint」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル