Symmetries of spatial graphs and Simon invariants

Ryo Nikkuni, Kouki Taniyama

研究成果: Article査読

9 被引用数 (Scopus)

抄録

An ordered and oriented 2-component link L in the 3-sphere is said to be achiral if it is ambient isotopic to its mirror image ignoring the orientation and ordering of the components. Kirk-Livingston showed that if L is achiral then the linking number of L is not congruent to 2 modulo 4. In this paper we study orientation-preserving or reversing symmetries of 2-component links, spatial complete graphs on 5 vertices and spatial complete bipartite graphs on 3 + 3 vertices in detail, and determine necessary conditions on linking numbers and Simon invariants for such links and spatial graphs to be symmetric

本文言語English
ページ(範囲)219-236
ページ数18
ジャーナルFundamenta Mathematicae
205
3
DOI
出版ステータスPublished - 2009 12 1

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「Symmetries of spatial graphs and Simon invariants」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル