Synthesis of NIPAAm-based polymer-grafted silica beads by surface-initiated ATRP using Me4Cyclam ligands and the thermo-responsive behaviors for lanthanide(III) ions

Ki Chul Park, Naokazu Idota, Takehiko Tsukahara

研究成果: Article

13 引用 (Scopus)

抄録

The applicability of atom transfer radical polymerization (ATRP) to the copolymerization of N-isopropylacrylamide (NIPAAm) with N-vinyl-2-pyrrolidone (NVP) was examined in CuCl/CuCl2-catalyst system using tris[2-(dimethylamino)ethyl]amine (Me6TREN) and 1,4,8,11-tetramethyl- 1,4,8,11-tetraazacyclotetradecane (Me4Cyclam) as ligands. In the Me6TREN system, less reactive NVP not only does not quantitatively copolymerize but also interferes with homopolymerization of NIPAAm units. In contrast, the Me4Cyclam system under heating was more active, although the controllability for polymer homogeneity is lower than Me 6TREN system. The application of active Me4Cyclam system to surface-initiated ATRP has successfully prepared silica beads surface-modified with NIPAAm copolymers of NVP and 4-vinylpyridine (VPy). The thermo-responsive behavior of surface-grafted NIPAAm-based polymers was investigated for lanthanide trivalent ions (Ln(III)) in different pH solutions. In the weak acidic solutions of pH = 5.4-5.6, all the surface-grafted polymers including poly(NIPAAm) exhibited only adsorption behavior with regular selectivity (Eu3+ > Sm3+ > Nd3+ > Ce3+ > La3+) below the phase-transition temperatures. In the more acidic solution of pH = 2.9, the surface-grafted poly(NIPAAm) and NVP copolymers exhibited adsorption and desorption behaviors below and above the phase-transition temperatures, while VPy copolymers exhibited only adsorption independent of temperature change. Furthermore, the adsorption capacity of all the surface-grafted polymers was deteriorated by the lowering of pH. The observed desorption and the deterioration of adsorption capacity suggest the weakening of adsorption strength for Ln(III) in low pH solutions. In this study, a possible adsorption/desorption mechanism of Ln(III) on surface-grafted NIPAAm-based polymers is discussed.

元の言語English
ページ(範囲)36-46
ページ数11
ジャーナルReactive and Functional Polymers
79
発行部数1
DOI
出版物ステータスPublished - 2014
外部発表Yes

Fingerprint

Lanthanoid Series Elements
Atom transfer radical polymerization
Rare earth elements
polymerization
Polymerization
Silicon Dioxide
ligand
Adsorption
Polymers
rare earth element
polymer
silica
Ligands
Silica
Ions
adsorption
ion
Desorption
desorption
Copolymers

ASJC Scopus subject areas

  • Materials Chemistry
  • Polymers and Plastics
  • Chemistry(all)
  • Chemical Engineering(all)
  • Environmental Chemistry
  • Biochemistry

これを引用

@article{d37b3138b9ff40a6867f74d7bc1577d7,
title = "Synthesis of NIPAAm-based polymer-grafted silica beads by surface-initiated ATRP using Me4Cyclam ligands and the thermo-responsive behaviors for lanthanide(III) ions",
abstract = "The applicability of atom transfer radical polymerization (ATRP) to the copolymerization of N-isopropylacrylamide (NIPAAm) with N-vinyl-2-pyrrolidone (NVP) was examined in CuCl/CuCl2-catalyst system using tris[2-(dimethylamino)ethyl]amine (Me6TREN) and 1,4,8,11-tetramethyl- 1,4,8,11-tetraazacyclotetradecane (Me4Cyclam) as ligands. In the Me6TREN system, less reactive NVP not only does not quantitatively copolymerize but also interferes with homopolymerization of NIPAAm units. In contrast, the Me4Cyclam system under heating was more active, although the controllability for polymer homogeneity is lower than Me 6TREN system. The application of active Me4Cyclam system to surface-initiated ATRP has successfully prepared silica beads surface-modified with NIPAAm copolymers of NVP and 4-vinylpyridine (VPy). The thermo-responsive behavior of surface-grafted NIPAAm-based polymers was investigated for lanthanide trivalent ions (Ln(III)) in different pH solutions. In the weak acidic solutions of pH = 5.4-5.6, all the surface-grafted polymers including poly(NIPAAm) exhibited only adsorption behavior with regular selectivity (Eu3+ > Sm3+ > Nd3+ > Ce3+ > La3+) below the phase-transition temperatures. In the more acidic solution of pH = 2.9, the surface-grafted poly(NIPAAm) and NVP copolymers exhibited adsorption and desorption behaviors below and above the phase-transition temperatures, while VPy copolymers exhibited only adsorption independent of temperature change. Furthermore, the adsorption capacity of all the surface-grafted polymers was deteriorated by the lowering of pH. The observed desorption and the deterioration of adsorption capacity suggest the weakening of adsorption strength for Ln(III) in low pH solutions. In this study, a possible adsorption/desorption mechanism of Ln(III) on surface-grafted NIPAAm-based polymers is discussed.",
keywords = "4-Vinylpyridine, ATRP, Lanthanide, N-Isopropylacrylamide, N-Vinyl-2-pyrrolidone",
author = "Park, {Ki Chul} and Naokazu Idota and Takehiko Tsukahara",
year = "2014",
doi = "10.1016/j.reactfunctpolym.2014.03.011",
language = "English",
volume = "79",
pages = "36--46",
journal = "Reactive and Functional Polymers",
issn = "1381-5148",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Synthesis of NIPAAm-based polymer-grafted silica beads by surface-initiated ATRP using Me4Cyclam ligands and the thermo-responsive behaviors for lanthanide(III) ions

AU - Park, Ki Chul

AU - Idota, Naokazu

AU - Tsukahara, Takehiko

PY - 2014

Y1 - 2014

N2 - The applicability of atom transfer radical polymerization (ATRP) to the copolymerization of N-isopropylacrylamide (NIPAAm) with N-vinyl-2-pyrrolidone (NVP) was examined in CuCl/CuCl2-catalyst system using tris[2-(dimethylamino)ethyl]amine (Me6TREN) and 1,4,8,11-tetramethyl- 1,4,8,11-tetraazacyclotetradecane (Me4Cyclam) as ligands. In the Me6TREN system, less reactive NVP not only does not quantitatively copolymerize but also interferes with homopolymerization of NIPAAm units. In contrast, the Me4Cyclam system under heating was more active, although the controllability for polymer homogeneity is lower than Me 6TREN system. The application of active Me4Cyclam system to surface-initiated ATRP has successfully prepared silica beads surface-modified with NIPAAm copolymers of NVP and 4-vinylpyridine (VPy). The thermo-responsive behavior of surface-grafted NIPAAm-based polymers was investigated for lanthanide trivalent ions (Ln(III)) in different pH solutions. In the weak acidic solutions of pH = 5.4-5.6, all the surface-grafted polymers including poly(NIPAAm) exhibited only adsorption behavior with regular selectivity (Eu3+ > Sm3+ > Nd3+ > Ce3+ > La3+) below the phase-transition temperatures. In the more acidic solution of pH = 2.9, the surface-grafted poly(NIPAAm) and NVP copolymers exhibited adsorption and desorption behaviors below and above the phase-transition temperatures, while VPy copolymers exhibited only adsorption independent of temperature change. Furthermore, the adsorption capacity of all the surface-grafted polymers was deteriorated by the lowering of pH. The observed desorption and the deterioration of adsorption capacity suggest the weakening of adsorption strength for Ln(III) in low pH solutions. In this study, a possible adsorption/desorption mechanism of Ln(III) on surface-grafted NIPAAm-based polymers is discussed.

AB - The applicability of atom transfer radical polymerization (ATRP) to the copolymerization of N-isopropylacrylamide (NIPAAm) with N-vinyl-2-pyrrolidone (NVP) was examined in CuCl/CuCl2-catalyst system using tris[2-(dimethylamino)ethyl]amine (Me6TREN) and 1,4,8,11-tetramethyl- 1,4,8,11-tetraazacyclotetradecane (Me4Cyclam) as ligands. In the Me6TREN system, less reactive NVP not only does not quantitatively copolymerize but also interferes with homopolymerization of NIPAAm units. In contrast, the Me4Cyclam system under heating was more active, although the controllability for polymer homogeneity is lower than Me 6TREN system. The application of active Me4Cyclam system to surface-initiated ATRP has successfully prepared silica beads surface-modified with NIPAAm copolymers of NVP and 4-vinylpyridine (VPy). The thermo-responsive behavior of surface-grafted NIPAAm-based polymers was investigated for lanthanide trivalent ions (Ln(III)) in different pH solutions. In the weak acidic solutions of pH = 5.4-5.6, all the surface-grafted polymers including poly(NIPAAm) exhibited only adsorption behavior with regular selectivity (Eu3+ > Sm3+ > Nd3+ > Ce3+ > La3+) below the phase-transition temperatures. In the more acidic solution of pH = 2.9, the surface-grafted poly(NIPAAm) and NVP copolymers exhibited adsorption and desorption behaviors below and above the phase-transition temperatures, while VPy copolymers exhibited only adsorption independent of temperature change. Furthermore, the adsorption capacity of all the surface-grafted polymers was deteriorated by the lowering of pH. The observed desorption and the deterioration of adsorption capacity suggest the weakening of adsorption strength for Ln(III) in low pH solutions. In this study, a possible adsorption/desorption mechanism of Ln(III) on surface-grafted NIPAAm-based polymers is discussed.

KW - 4-Vinylpyridine

KW - ATRP

KW - Lanthanide

KW - N-Isopropylacrylamide

KW - N-Vinyl-2-pyrrolidone

UR - http://www.scopus.com/inward/record.url?scp=84898961606&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84898961606&partnerID=8YFLogxK

U2 - 10.1016/j.reactfunctpolym.2014.03.011

DO - 10.1016/j.reactfunctpolym.2014.03.011

M3 - Article

AN - SCOPUS:84898961606

VL - 79

SP - 36

EP - 46

JO - Reactive and Functional Polymers

JF - Reactive and Functional Polymers

SN - 1381-5148

IS - 1

ER -