Tactile brain-computer interface using classification of P300 responses evoked by full body spatial vibrotactile stimuli

Takumi Kodama, Shoji Makino, Tomasz M. Rutkowski*

*この研究の対応する著者

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

In this study we propose a novel stimulus-driven brain-computer interface (BCI) paradigm, which generates control commands based on classification of somatosensory modality P300 responses. Six spatial vibrotactile stimulus patterns are applied to entire back and limbs of a user. The aim of the current project is to validate an effectiveness of the vibrotactile stimulus patterns for BCI purposes and to establish a novel concept of tactile modality communication link, which shall help locked-in syndrome (LIS) patients, who lose their sight and hearing due to sensory disabilities. We define this approach as a full-body BCI (fbBCI) and we conduct psychophysical stimulus evaluation and realtime EEG response classification experiments with ten healthy body-able users. The grand mean averaged psychophysical stimulus pattern recognition accuracy have resulted at 98.18%, whereas the realtime EEG accuracy at 53.67%. An information-transfer-rate (ITR) scores of all the tested users have ranged from 0.042 to 4.154 bit/minute.

本文言語English
ホスト出版物のタイトル2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9789881476821
DOI
出版ステータスPublished - 2017 1 17
外部発表はい
イベント2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 - Jeju, Korea, Republic of
継続期間: 2016 12 132016 12 16

出版物シリーズ

名前2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016

Other

Other2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
国/地域Korea, Republic of
CityJeju
Period16/12/1316/12/16

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • 情報システム
  • 信号処理

フィンガープリント

「Tactile brain-computer interface using classification of P300 responses evoked by full body spatial vibrotactile stimuli」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル