TY - JOUR
T1 - Tangent loci and certain linear sections of adjoint varieties
AU - Kaji, Hajime
AU - Yasukura, Osami
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2000/6
Y1 - 2000/6
N2 - An adjoint variety X (g) associated to a complex simple Lie algebra g is by definition a projective variety in ℙ*(g) obtained as the projectivization of the (unique) non-zero, minimal nilpotent orbit in g. We first describe the tangent loci of X (g) in terms of s-fraktur sign and l-fraktur sign2-triples. Secondly for a graded decomposition of contact type g = ⊕-2≤i≤2gi, we show that the intersection of X (g) and the linear subspace ℙ*(g1) in ℙ*(g) coincides with the cubic Veronese variety associated to g.
AB - An adjoint variety X (g) associated to a complex simple Lie algebra g is by definition a projective variety in ℙ*(g) obtained as the projectivization of the (unique) non-zero, minimal nilpotent orbit in g. We first describe the tangent loci of X (g) in terms of s-fraktur sign and l-fraktur sign2-triples. Secondly for a graded decomposition of contact type g = ⊕-2≤i≤2gi, we show that the intersection of X (g) and the linear subspace ℙ*(g1) in ℙ*(g) coincides with the cubic Veronese variety associated to g.
UR - http://www.scopus.com/inward/record.url?scp=0039622830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0039622830&partnerID=8YFLogxK
U2 - 10.1017/S0027763000007297
DO - 10.1017/S0027763000007297
M3 - Article
AN - SCOPUS:0039622830
VL - 158
SP - 63
EP - 72
JO - Nagoya Mathematical Journal
JF - Nagoya Mathematical Journal
SN - 0027-7630
ER -