抄録
Metal chalcogenide-based mixed ionic-electronic conductors such as Ag2S and Cu2S can be specifically architected for application in nanoelectronic devices. We present a template-confined synthesis of metal chalcogenide (e.g., Ag2S, Cu2S) nanowires for mixed conductor-based nanoelectronics. First, the metal nanowire array was electroplated into pores of a porous alumina membrane. Anodic polarization was then used to transform the metal into the metal sulfide in aqueous hydrosulfide (HS-) solutions. The as-synthesized mixed conductors' hetero-nanowire array was characterized by X-ray diffraction and electron microscopy. Electronic transport measurements show non-linear and reproducible electrical switching characteristics. The high and low resistance states can be reversibly changed by altering the polarity of the applied voltage between the bottom and top electrodes. The electrical-switching behavior is attributed to electric-field-induced accumulation and dissolution of metallic conducting pathways inside the mixed conductors' nanowires.
本文言語 | English |
---|---|
ページ(範囲) | 2527-2531 |
ページ数 | 5 |
ジャーナル | Solid State Ionics |
巻 | 177 |
号 | 26-32 SPEC. ISS. |
DOI | |
出版ステータス | Published - 2006 10月 31 |
外部発表 | はい |
ASJC Scopus subject areas
- 化学 (全般)
- 材料科学(全般)
- 凝縮系物理学