TERP structures and P3D6-TEP bundles

Martin Guest*, Claus Hertling

*この研究の対応する著者

    研究成果: Chapter

    抄録

    The solutions of PIII(0, 0, 4, −4) on ℝ> 0 which take values in ℝ or in S 1 are related to the TERP structures which the second author had defined in [He03], motivated by [CV91, CV93, Du93], and which were studied subsequently in [HS07, HS10, HS11] [Mo11b, Sa05a, Sa05b] and other papers. They generalize variations of (polarized) Hodge structures. The concept of TERP(0) bundle is defined below in Definition 16.1. It is a TEP bundle with an additional real structure. It can be pure or not, and if it is pure, it can be polarized or not. A pure polarized TERP(0) bundle generalizes a polarized Hodge structure.

    本文言語English
    ホスト出版物のタイトルLecture Notes in Mathematics
    出版社Springer Verlag
    ページ161-170
    ページ数10
    2198
    DOI
    出版ステータスPublished - 2017

    出版物シリーズ

    名前Lecture Notes in Mathematics
    2198
    ISSN(印刷版)0075-8434

    ASJC Scopus subject areas

    • 代数と数論

    フィンガープリント

    「TERP structures and P<sub>3D6</sub>-TEP bundles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル