The cardinality of compact spaces satisfying the countable chain condition

研究成果: Article査読

抄録

We prove that for a compact Hausdorff space X, if λc(X)<w(X) for every infinite cardinal λ<w(X) and λc(X)<cf(w(X)) for every infinite cardinal λ<cf(w(X)), then Tikhonov cube [0,1]w(X) is a continuous image of X, in particular the cardinality of X is just 2w(X). As an application of this result, we consider elementary submodel spaces and improve Tall's result in [17].

本文言語English
ページ(範囲)41-55
ページ数15
ジャーナルTopology and its Applications
174
DOI
出版ステータスPublished - 2014 9 1
外部発表はい

ASJC Scopus subject areas

  • Geometry and Topology

フィンガープリント 「The cardinality of compact spaces satisfying the countable chain condition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル