The depth of an ideal with a given hilbert function

Satoshi Murai, Takayuki Hibi

研究成果: Article

8 引用 (Scopus)

抜粋

Let A = K[x1,⋯,xn] denote the polynomial ring in n variables over a field K with each deg X1 = 1. Let I be a homogeneous ideal of A with I ≠ A and Ha/i the Hilbert function of the quotient algebra A/I .Given a numerical function H : ℕ → ℕ satisfying H = Ha/i for some homogeneous ideal I of A,we write A h for the set of those integers 0 ≤ r ≤ n such that there exists a homogeneous ideal I of A with Ha/i = H and with depth A/I = r. It will be proved that one has either Ah = {0,1,⋯,b} for some 0 ≤ b ≤ n or A|H

元の言語English
ページ(範囲)1533-1538
ページ数6
ジャーナルProceedings of the American Mathematical Society
136
発行部数5
DOI
出版物ステータスPublished - 2008 5 1
外部発表Yes

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント The depth of an ideal with a given hilbert function' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用