TY - JOUR
T1 - The dynamics of three-planet systems
T2 - An approach from a dynamical system
AU - Shikita, Bungo
AU - Koyama, Hiroko
AU - Yamada, Shoichi
PY - 2010
Y1 - 2010
N2 - We study in detail the motions of three planets interacting with each other under the influence of a central star. It is known that the system with more than two planets becomes unstable after remaining quasi-stable for long times, leading to highly eccentric orbital motions or ejections of some of the planets. In this paper, we are concerned with the underlying physics for this quasi-stability as well as the subsequent instability and advocate the so-called stagnant motion in the phase space, which has been explored in the field of a dynamical system. We employ the Lyapunov exponent, the power spectra of orbital elements, and the distribution of the durations of quasi-stable motions to analyze the phase-space structure of the three-planet system, the simplest and hopefully representative one that shows the instability. We find from the Lyapunov exponent that the system is almost non-chaotic in the initial quasi-stable state whereas it becomes intermittently chaotic thereafter. The non-chaotic motions produce the horizontal dense band in the action-angle plot whereas the voids correspond to the chaotic motions. We obtain power laws for the power spectra of orbital eccentricities. Power-law distributions are also found for the durations of quasi-stable states. With all these results combined together, we may reach the following picture: the phase space consists of the so-called KAM tori surrounded by satellite tori and imbedded in the chaotic sea. The satellite tori have a self-similar distribution and are responsible for the scale-free power-law distributions of the duration times. The system is trapped around one of the KAM torus and the satellites for a long time (the stagnant motion) and moves to another KAM torus with its own satellites from time to time, corresponding to the intermittent chaotic behaviors.
AB - We study in detail the motions of three planets interacting with each other under the influence of a central star. It is known that the system with more than two planets becomes unstable after remaining quasi-stable for long times, leading to highly eccentric orbital motions or ejections of some of the planets. In this paper, we are concerned with the underlying physics for this quasi-stability as well as the subsequent instability and advocate the so-called stagnant motion in the phase space, which has been explored in the field of a dynamical system. We employ the Lyapunov exponent, the power spectra of orbital elements, and the distribution of the durations of quasi-stable motions to analyze the phase-space structure of the three-planet system, the simplest and hopefully representative one that shows the instability. We find from the Lyapunov exponent that the system is almost non-chaotic in the initial quasi-stable state whereas it becomes intermittently chaotic thereafter. The non-chaotic motions produce the horizontal dense band in the action-angle plot whereas the voids correspond to the chaotic motions. We obtain power laws for the power spectra of orbital eccentricities. Power-law distributions are also found for the durations of quasi-stable states. With all these results combined together, we may reach the following picture: the phase space consists of the so-called KAM tori surrounded by satellite tori and imbedded in the chaotic sea. The satellite tori have a self-similar distribution and are responsible for the scale-free power-law distributions of the duration times. The system is trapped around one of the KAM torus and the satellites for a long time (the stagnant motion) and moves to another KAM torus with its own satellites from time to time, corresponding to the intermittent chaotic behaviors.
KW - Celestial mechanics
KW - Chaos
KW - Planets and satellites: dynamical evolution and stability
UR - http://www.scopus.com/inward/record.url?scp=77950277243&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950277243&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/712/2/819
DO - 10.1088/0004-637X/712/2/819
M3 - Article
AN - SCOPUS:77950277243
VL - 712
SP - 819
EP - 832
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 2
ER -