The equivalence theorem of kinetic solutions and entropy solutions for stochastic scalar conservation laws

Dai Noboriguchi*

*この研究の対応する著者

研究成果: Article査読

抄録

In this paper, we prove the equivalence of kinetic solutions and entropy solutions for the initialboundary value problem with a non-homogeneous boundary condition for a multi-dimensional scalar first-order conservation law with a multiplicative noise. We somewhat generalized the definitions of kinetic solutions and of entropy solutions given in Kobayasi and Noboriguchi [8] and Bauzet, Vallet and Wittobolt [1], respectively.

本文言語English
ページ(範囲)575-587
ページ数13
ジャーナルTokyo Journal of Mathematics
38
2
DOI
出版ステータスPublished - 2015 12 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「The equivalence theorem of kinetic solutions and entropy solutions for stochastic scalar conservation laws」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル