The euler characteristic of an enriched category

Kazunori Noguchi, Kohei Tanaka

研究成果査読

抄録

We develop the homotopy theory of Euler characteristic (magnitude) of a category enriched in a monoidal model category. If a monoidal model category V is equipped with an Euler characteristic that is compatible with weak equivalences and fibrations in V, then our Euler characteristic of V-enriched categories is also compatible with weak equivalences and fibrations in the canonical model structure on the category of V-enriched categories. In particular, we focus on the case of topological categories; i.e., categories enriched in the category of topological spaces. As its application, we obtain the ordinary Euler characteristic of a cellular stratified space X by computing the Euler characteristic of the face category C(X).

本文言語English
ページ(範囲)1-30
ページ数30
ジャーナルTheory and Applications of Categories
31
出版ステータスPublished - 2016 1 3
外部発表はい

ASJC Scopus subject areas

  • 数学(その他)

フィンガープリント

「The euler characteristic of an enriched category」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル