The existence and regularity of time-periodic solutions to the three-dimensional Navier-Stokes equations in the whole space

Mads Kyed*

*この研究の対応する著者

研究成果: Article査読

16 被引用数 (Scopus)

抄録

The existence, uniqueness and regularity of time-periodic solutions to the Navier-Stokes equations in the three-dimensional whole space are investigated. We consider the Navier-Stokes equations with a non-zero drift term corresponding to the physical model of a fluid flow around a body that moves with a non-zero constant velocity. The existence of a strong time-periodic solution is shown for small time-periodic data. It is further shown that this solution is unique in a large class of weak solutions that can be considered physically reasonable. Finally, we establish regularity properties for any strong solution regardless of its size.

本文言語English
ページ(範囲)2909-2935
ページ数27
ジャーナルNonlinearity
27
12
DOI
出版ステータスPublished - 2014 12月 1
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「The existence and regularity of time-periodic solutions to the three-dimensional Navier-Stokes equations in the whole space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル