The fixed energy problem for a class of nonconvex singular Hamiltonian systems

C. Carminati, É Séré, K. Tanaka

研究成果: Article査読

11 被引用数 (Scopus)

抄録

We consider a noncompact hypersurface H in R2 N which is the energy level of a singular Hamiltonian of "strong force" type. Under global geometric assumptions on H, we prove that it carries a closed characteristic, as a consequence of a result by Hofer and Viterbo on the Weinstein conjecture in cotangent bundles of compact manifolds. Our theorem contains, as particular cases, earlier results on the fixed energy problem for singular Lagrangian systems of strong force type.

本文言語English
ページ(範囲)362-377
ページ数16
ジャーナルJournal of Differential Equations
230
1
DOI
出版ステータスPublished - 2006 11 1

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「The fixed energy problem for a class of nonconvex singular Hamiltonian systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル