The frequency-localization technique and minimal decay-regularity for Euler–Maxwell equations

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Dissipative hyperbolic systems of regularity-loss have been recently received increasing attention. Extra higher regularity is usually assumed to obtain the optimal decay estimates, in comparison with the global-in-time existence of solutions. In this paper, we develop a new frequency-localization time-decay property, which enables us to overcome the technical difficulty and improve the minimal decay-regularity for dissipative systems. As an application, it is shown that the optimal decay rate of L1(R3)–L2(R3) is available for Euler–Maxwell equations with the critical regularity sc=5/2, that is, the extra higher regularity is not necessary.

本文言語English
ページ(範囲)1537-1554
ページ数18
ジャーナルJournal of Mathematical Analysis and Applications
446
2
DOI
出版ステータスPublished - 2017 2 15
外部発表はい

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「The frequency-localization technique and minimal decay-regularity for Euler–Maxwell equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル