The high ratio of44Ti/56Ni in Cassiopeia a and the axisymmetric collapse-driven supernova explosion

Shigehiro Nagataki*, Masa Aki Hashimoto, Katsuhiko Sato, Shoichi Yamada, Yuko S. Mochizuki

*この研究の対応する著者

研究成果査読

77 被引用数 (Scopus)

抄録

The large abundance ratio of 44Ti/56Ni in Cassiopeia A is puzzling. In fact, the ratio seems to be larger than the theoretical constraint derived by Woosley & Hoffman. However, this constraint is obtained on the assumption that the explosion is spherically symmetric, whereas Cas A is famous for the asymmetric form of the remnant. Recently, Nagataki et al. calculated the explosive nucleosynthesis of axisymmetrically deformed collapse-driven supernova. They reported that the ratio of 44Ti/56Ni was enhanced by the stronger alpha-rich freezeout in the polar region. In this Letter, we apply these results to Cas A and examine whether this effect can explain the large amount of 41Ti and the large ratio of 44Ti/56Ni. We demonstrate that the conventional, spherically symmetric explosion model cannot explain the 44Ti mass produced in Cas A if its lifetime is shorter than ∼80 yr and the intervening space is transparent to the gamma-ray line from the decay of 44Ti. On the other hand, we show that the axisymmetric explosion models can solve the problem. We expect the same effect from a three-dimensionally asymmetric explosion, since the stronger alpha-rich freezeout will also occur in that case in the region where the larger energy is deposited.

本文言語English
ページ(範囲)L45-L48
ジャーナルAstrophysical Journal
492
1 PART II
DOI
出版ステータスPublished - 1998
外部発表はい

ASJC Scopus subject areas

  • 天文学と天体物理学
  • 宇宙惑星科学

フィンガープリント

「The high ratio of<sup>44</sup>Ti/<sup>56</sup>Ni in Cassiopeia a and the axisymmetric collapse-driven supernova explosion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル