The hydrodynamic limit for a system with interactions prescribed by Ginzburg-Landau type random Hamiltonian

研究成果: Article

2 引用 (Scopus)

抜粋

As a microscopic model we consider a system of interacting continuum like spin field over Rd. Its evolution law is determined by the Ginzburg-Landau type random Hamiltonian and the total spin of the system is preserved by this evolution. We show that the spin field converges, under the hydrodynamic space-time scalling, to a deterministic limit which is a solution of a certain nonlinear diffusion equation. This equation describes the time evolution of the macroscopic field. The hydrodynamic scaling has an effect of the homogenization on the system at the same time.

元の言語English
ページ(範囲)519-562
ページ数44
ジャーナルProbability Theory and Related Fields
90
発行部数4
DOI
出版物ステータスPublished - 1991 12 1

ASJC Scopus subject areas

  • Analysis
  • Statistics and Probability
  • Statistics, Probability and Uncertainty

フィンガープリント The hydrodynamic limit for a system with interactions prescribed by Ginzburg-Landau type random Hamiltonian' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用