The hydrodynamic limit for a system with interactions prescribed by Ginzburg-Landau type random Hamiltonian

Tadahisa Funaki*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

As a microscopic model we consider a system of interacting continuum like spin field over Rd. Its evolution law is determined by the Ginzburg-Landau type random Hamiltonian and the total spin of the system is preserved by this evolution. We show that the spin field converges, under the hydrodynamic space-time scalling, to a deterministic limit which is a solution of a certain nonlinear diffusion equation. This equation describes the time evolution of the macroscopic field. The hydrodynamic scaling has an effect of the homogenization on the system at the same time.

本文言語English
ページ(範囲)519-562
ページ数44
ジャーナルProbability Theory and Related Fields
90
4
DOI
出版ステータスPublished - 1991 12 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「The hydrodynamic limit for a system with interactions prescribed by Ginzburg-Landau type random Hamiltonian」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル