The impact of americium target in-core loading on reactivity characteristics and ULOF response of sodium-cooled MOX FBR

Akifumi Yamaji*, Katsuyuki Kawashima, Shigeo Ohm, Tomoyasu Mizuno, Tsutomu Okubo

*この研究の対応する著者

研究成果査読

2 被引用数 (Scopus)

抄録

The idea of recycling minor actinides (MA5) with fast breeder reactors (FBRs) is an effective way to po tentially reduce environmental burdens associated with nuclear energy production. For such FBR cores, it is necessary to find one or more promising MA loading methods that can effectively transmute MAs while mini mizing deterioration of the core performance and reduc ing the overall fuel fabrication cost. In this study, the homogeneous MA loading core with 3 wt% MAs is used as a reference design to evaluate the impact of the am ericium (Am) target in-core loading on reactivity char acteristics and unprotected loss-of-flow (ULOF) response of sodium-cooled mixed-oxide FBR. The Am target loading core of this study is designed by roughly preserving the MA inventory of the homo geneous MA loading core while placing Am and curium (Cm) to the ring-shaped target region between the inner and the outer core regions with 20 wt% content. This design can flatten core radial reactivity worth distributions and effectively reduce reactivity insertion into the core during ULOF compared with the homo geneous MA loading core. It also has relatively flat and stable radial power distributions, which allow a rela tively large coolant flow rate to be distributed to the target region. During ULOF, the power increase of the Am target loading core of this study is slower than that of the ho mogeneous MA loading core. The maximum fuel temper ature of the target region does not become particularly high compared with that of the inner core, and it is much lower than the melting point. Hence, the proposed Am target in-core loading method does not have a sign cant influence on ULOF response of the core. It is promising from the viewpoints of the reactivity characteristics and ULOF response.

本文言語English
ページ(範囲)142-152
ページ数11
ジャーナルNuclear Technology
171
2
DOI
出版ステータスPublished - 2010 8
外部発表はい

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学
  • 原子力エネルギーおよび原子力工学
  • 凝縮系物理学

フィンガープリント

「The impact of americium target in-core loading on reactivity characteristics and ULOF response of sodium-cooled MOX FBR」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル