The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion–advection-reaction equations

Yuki Ueda*, Norikazu Saito

*この研究の対応する著者

研究成果: Article査読

抄録

The Nitsche method is a method of “weak imposition” of the inhomogeneous Dirichlet boundary conditions for partial differential equations. This paper explains stability and convergence study of the Nitsche method applied to evolutionary diffusion–advection-reaction equations. We mainly discuss a general space semidiscrete scheme including not only the standard finite element method but also Isogeometric Analysis. Our method of analysis is a variational one that is a popular method for studying elliptic problems. The variational method enables us to obtain the best approximation property directly. Actually, results show that the scheme satisfies the inf-sup condition and Galerkin orthogonality. Consequently, the optimal order error estimates in some appropriate norms are proven under some regularity assumptions on the exact solution. We also consider a fully discretized scheme using the backward Euler method. Numerical example demonstrate the validity of those theoretical results.

本文言語English
ページ(範囲)209-238
ページ数30
ジャーナルJapan Journal of Industrial and Applied Mathematics
36
1
DOI
出版ステータスPublished - 2019 1 15
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)
  • 応用数学

フィンガープリント

「The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion–advection-reaction equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル