### 抜粋

A new large deviation property for the Lempel-Ziv complexity is numerically studied by using a one-dimesional non-hyperbolic "modified Bernoulli map", where the transition between stationary and non-stationary chaos is clearly observed. We will show that the Lempel-Ziv complexity and its fluctuations obey the universal scaling laws, and that the Lempel-Ziv complexity has the L^{1}-function property of the infinite ergodic theory. One of the most striking results is that the 1/f spectral process reveals the maximum diversity at the transition point from the stationary chaos to the non-stationary one.

元の言語 | English |
---|---|

ページ（範囲） | 213-214 |

ページ数 | 2 |

ジャーナル | Journal of Physics: Conference Series |

巻 | 31 |

発行部数 | 1 |

DOI | |

出版物ステータス | Published - 2006 3 22 |

### ASJC Scopus subject areas

- Physics and Astronomy(all)

## フィンガープリント The Lempel-Ziv complexity of 1/f spectral chaos and the infinite ergodic theory' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Shinkai, S., & Aizawa, Y. (2006). The Lempel-Ziv complexity of 1/f spectral chaos and the infinite ergodic theory.

*Journal of Physics: Conference Series*,*31*(1), 213-214. https://doi.org/10.1088/1742-6596/31/1/059