The minimal decay regularity of smooth solutions to the Euler-Maxwell two-fluid system

研究成果: Article査読

抄録

The compressible Euler-Maxwell two-fluid system arises in the modeling of magnetized plasmas. We first design crucial energy functionals to capture its dissipative structure, which is relatively weaker in comparison with the one-fluid case in the whole space R3, due to the nonlinear coupling and cancelation between electrons and ions. Furthermore, with the aid of Lp(Rn)-Lq(Rn)-Lr(Rn) time-decay estimates, we obtain the L1(R3)-L2(R3) decay rate with the critical regularity (sc = 3) for the global-in-time existence of smooth solutions, which solves the decay problem left open in [Y. J. Peng, Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations, Ann. IHP Anal. Non Linéaire 29 (2012) 737-759].

本文言語English
ページ(範囲)719-733
ページ数15
ジャーナルJournal of Hyperbolic Differential Equations
13
4
DOI
出版ステータスPublished - 2016 12 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数学 (全般)

フィンガープリント

「The minimal decay regularity of smooth solutions to the Euler-Maxwell two-fluid system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル