The Navier–Stokes equations in exterior Lipschitz domains: Lp-theory

Patrick Tolksdorf, Keiichi Watanabe

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We show that the Stokes operator defined on Lσp(Ω) for an exterior Lipschitz domain Ω⊂Rn (n≥3) admits maximal regularity provided that p satisfies |1/p−1/2|<1/(2n)+ε for some ε>0. In particular, we prove that the negative of the Stokes operator generates a bounded analytic semigroup on Lσp(Ω) for such p. In addition, Lp-Lq-mapping properties of the Stokes semigroup and its gradient with optimal decay estimates are obtained. This enables us to prove the existence of mild solutions to the Navier–Stokes equations in the critical space L(0,T;Lσ3(Ω)) (locally in time and globally in time for small initial data).

本文言語English
ページ(範囲)5765-5801
ページ数37
ジャーナルJournal of Differential Equations
269
7
DOI
出版ステータスPublished - 2020 9 15

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「The Navier–Stokes equations in exterior Lipschitz domains: L<sup>p</sup>-theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル