The non-constant-sum Colonel Blotto game

Brian Roberson*, Dmitriy Kvasov

*この研究の対応する著者

研究成果: Article査読

38 被引用数 (Scopus)

抄録

The Colonel Blotto game is a two-player constant-sum game in which each player simultaneously distributes his fixed level of resources across a set of contests. In the traditional formulation of the Colonel Blotto game, the players' resources are "use it or lose it" in the sense that any resources that are not allocated to one of the contests are forfeited. This article examines a non-constant-sum version of the Colonel Blotto game that relaxes this use it or lose it feature. We find that if the level of asymmetry between the players' budgets is below a threshold, then there exists a one-to-one mapping from the unique set of equilibrium univariate marginal distribution functions in the constant-sum game to those in the non-constant-sum game. Once the asymmetry of the players' budgets exceeds the threshold, this relationship breaks down and we construct a new equilibrium.

本文言語English
ページ(範囲)397-433
ページ数37
ジャーナルEconomic Theory
51
2
DOI
出版ステータスPublished - 2012 10
外部発表はい

ASJC Scopus subject areas

  • 経済学、計量経済学

フィンガープリント

「The non-constant-sum Colonel Blotto game」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル