The ordered field property and a finite algorithm for the Nash bargaining solution

Mamoru Kaneko

研究成果: Article

2 引用 (Scopus)

抜粋

This note proves that the two person Nash bargaining theory with polyhedral bargaining regions needs only an ordered field (which always includes the rational number field) as its scalar field. The existence of the Nash bargaining solution is the main part of this result and the axiomatic characterization can be proved in the standard way with slight modifications. We prove the existence by giving a finite algorithm to calculate the Nash solution for a polyhedral bargaining problem, whose speed is of order Bm(m-1) (m is the number of extreme points and B is determined by the extreme points).

元の言語English
ページ(範囲)227-236
ページ数10
ジャーナルInternational Journal of Game Theory
20
発行部数3
DOI
出版物ステータスPublished - 1992 9
外部発表Yes

ASJC Scopus subject areas

  • Social Sciences (miscellaneous)
  • Statistics and Probability
  • Mathematics (miscellaneous)
  • Economics and Econometrics

フィンガープリント The ordered field property and a finite algorithm for the Nash bargaining solution' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用