The principle of symmetric criticality for non-differentiable mappings

Jun Kobayashi, Mitsuharu Otani*

*この研究の対応する著者

    研究成果: Article査読

    25 被引用数 (Scopus)

    抄録

    Let X be a Banach space on which a symmetry group G linearly acts and let J be a G-invariant functional defined on X. In 1979, R. Palais (Comm. Math. Phys. 69 (1979) 19) gave some sufficient conditions to guarantee the so-called "Principle of Symmetric Criticality": every critical point of J restricted on the subspace of G-symmetric points becomes also a critical point of J on the whole space X. This principle is generalized to the case where J is not differentiable within the setting which does not require the full variational structure under the hypothesis that the action of G is isometry or G is compact.

    本文言語English
    ページ(範囲)428-449
    ページ数22
    ジャーナルJournal of Functional Analysis
    214
    2
    DOI
    出版ステータスPublished - 2004 9 15

    ASJC Scopus subject areas

    • 分析

    フィンガープリント

    「The principle of symmetric criticality for non-differentiable mappings」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル