The reactivity of selenite toward methyl viologen in mildly acidic aqueous solutions

Qi Han, Zhange Feng, Daniel Alberto Scherson

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The chemical and electrochemical reactivity of selenite, SeO3 2−, toward methyl viologen, MV2+, has been examined in mildly acidic (pH 4) aqueous electrolytes. Solutions containing these two species heated at 60°C for ca. 2 hours, were found to yield both 1-methyl-[4,4′-bipyridine]-1-ium chloride and elemental Se as the main reaction products, as evidenced from information derived from mass spectrometric and spectroscopic techniques. Cyclic voltammetric measurements recorded in acetate buffer (pH 4) with a glassy carbon, GC, electrode bearing a self-assembled monolayer, SAM, of N-ethyl-N′-octadecyl-4,4′-bipyridinium (EOB), which had been exposed to a 100 mM SeO3 2− solution in aqueous acetate buffer (pH 4) for over 200 min and then rinsed with ultrapure water, displayed a significantly smaller redox peak ascribed to the reduction of the viologen moiety in the EOB SAM. This observation is consistent with the loss of the redox active species within the layer and supports the view that SeO3 2− can cleave the N-C bond in EOB leading to the release of the viologen group into the solution. Cyclic voltammetric experiments involving a freshly prepared EOB SAM on GC in 1 mM SeO3 2− in the same buffer yielded a large reduction current with an onset potential virtually identical to that associated with the reduction of the EOB SAM in SeO3 2−-free solutions. On this basis, the extraordinary shift in the onset of SeO3 2− reduction induced by the presence of MV2+ in the same electrolyte reported by Koshikumo et al. [Electrochemistry (Tokyo, Jpn.), 81(5), 350 (2013)], may be explained by invoking formation of MV2+ aggregates on the GC surface in amounts too small to be detected by conventional voltammetric techniques.

本文言語English
ページ(範囲)H890-H895
ジャーナルJournal of the Electrochemical Society
164
13
DOI
出版ステータスPublished - 2017 1月 1
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 再生可能エネルギー、持続可能性、環境
  • 表面、皮膜および薄膜
  • 電気化学
  • 材料化学

フィンガープリント

「The reactivity of selenite toward methyl viologen in mildly acidic aqueous solutions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル