The relationship between randomness and power-law distributed move lengths in random walk algorithms

Tomoko Sakiyama*, Yukio Pegio Gunji

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Recently, we proposed a new random walk algorithm, termed the REV algorithm, in which the agent alters the directional rule that governs it using the most recent four random numbers. Here, we examined how a non-bounded number, i.e., "randomness" regarding move direction, was important for optimal searching and power-law distributed step lengths in rule change. We proposed two algorithms: the REV and REV-bounded algorithms. In the REV algorithm, one of the four random numbers used to change the rule is non-bounded. In contrast, all four random numbers in the REV-bounded algorithm are bounded. We showed that the REV algorithm exhibited more consistent power-law distributed step lengths and flexible searching behavior.

本文言語English
ページ(範囲)76-83
ページ数8
ジャーナルPhysica A: Statistical Mechanics and its Applications
402
DOI
出版ステータスPublished - 2014 5 15
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「The relationship between randomness and power-law distributed move lengths in random walk algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル