The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems

Hitoshi Ishii*, Hiroyoshi Mitake, Hung V. Tran

*この研究の対応する著者

    研究成果: Article査読

    14 被引用数 (Scopus)

    抄録

    In (Part 1 of this series), we have introduced a variational approach to studying the vanishing discount problem for fully nonlinear, degenerate elliptic, partial differential equations in a torus. We develop this approach further here to handle boundary value problems. In particular, we establish new representation formulas for solutions of discount problems, critical values, and use them to prove convergence results for the vanishing discount problems. Dans (première partie de cette série), on a introduit une approche variationnelle pour l'étude du problème d'actualisation évanescente pour des équations dégénérées elliptiques complétement non-linéaires posées sur un tore. Nous continuons ici de développer cette approche pour traiter les problèmes avec conditions au bord. Nous établissons en particulier de nouvelles formules de représentation des solutions du problème d'actualisation, des valeurs critiques, et nous les utilisons pour démontrer des résultats de convergence pour le problème d'actualisation évanescente.

    本文言語English
    ジャーナルJournal des Mathematiques Pures et Appliquees
    DOI
    出版ステータスAccepted/In press - 2016 8 25

    ASJC Scopus subject areas

    • 数学 (全般)
    • 応用数学

    フィンガープリント

    「The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル