The VMO-Teichmüller space and the variant of Beurling–Ahlfors extension by heat kernel

Huaying Wei, Katsuhiko Matsuzaki*

*この研究の対応する著者

研究成果: Article査読

抄録

We give a real-analytic section for the Teichmüller projection onto the VMO-Teichmüller space by using the variant of Beurling–Ahlfors extension by heat kernel introduced by Fefferman et al. (Ann Math 134:65–124, 1991). Based on this result, we prove that the VMO-Teichmüller space can be endowed with a real Banach manifold structure that is real-analytically equivalent to its complex Banach manifold structure. We also obtain that the VMO-Teichmüller space admits a real-analytic contraction mapping.

本文言語English
ページ(範囲)1739-1760
ページ数22
ジャーナルMathematische Zeitschrift
302
3
DOI
出版ステータスPublished - 2022 11月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「The VMO-Teichmüller space and the variant of Beurling–Ahlfors extension by heat kernel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル