Thermodynamically consistent modeling for complex fluids and mathematical analysis

Yukihito Suzuki, Masashi Ohnawa*, Naofumi Mori, Shuichi Kawashima

*この研究の対応する著者

研究成果: Article査読

抄録

The goal of this paper is to derive governing equations for complex fluids in a thermodynamically consistent way so that the conservation of energy and the increase of entropy is guaranteed. The model is a system of first-order partial differential equations on density, velocity, energy (or equivalently temperature), and conformation tensor. A barotropic model is also derived. In the one-dimensional case, we express the barotropic model in the form of hyperbolic balance laws, and show that it satisfies the stability condition. Consequently, the global existence of solutions around equilibrium states is proved and the convergence rates is obtained.

本文言語English
ページ(範囲)1919-1949
ページ数31
ジャーナルMathematical Models and Methods in Applied Sciences
31
10
DOI
出版ステータスPublished - 2021 9月 1

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Thermodynamically consistent modeling for complex fluids and mathematical analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル