Thermomagnetic convection of ferrofluid in an enclosure channel with an internal magnetic field

Myoungwoo Lee, Youn Jea Kim*

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

Ferrofluid is a colloidal liquid in which magnetic nanoparticles such as Fe3O4 are dispersed in a nonconductive solution, and the average diameter of the nanoparticles is 10 nm. When a magnetic field is applied, the ferrofluid generates magnetization, which changes the physical properties of the fluid itself. In this study, characteristics of the thermomagnetic convection of ferrofluid (Fe3O4) by the permanent magnet in the enclosure channel were studied. To effectively mix the ferrofluid (Fe3O4) and disturb the boundary layer, the heat dissipation of the heat source depending on the strength of the magnetic field and the shape of the enclosure channel was numerically studied. In particular, four different enclosure channels were considered: Square, separated square, circle, and separated circle. The hot temperature was set at the center of the enclosure channel. The ferrofluid was affected by the permanent magnet in the center of the channel. The magnetic field strength in the region close to the permanent magnet was enhanced. The magnetophoretic (MAP) force increased with increasing magnetic field strength. The MAP force generated a vortex in the enclosure channel, disturbing the thermal boundary. The vortex occurs differently, depending on the shape of the enclosure channel and affects the thermomagnetic convection. The temperature and velocity fields for thermomagnetic convection were described and the convective heat flux was calculated and compared. Results show that when the magnetic field strength was 4000 kA/m and the shape of the enclosure channel was a circle, the maximum convective heat flux of 4.86 × 105 W/m2 was obtained.

本文言語English
論文番号553
ジャーナルMicromachines
10
9
DOI
出版ステータスPublished - 2019 9月 1
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 機械工学
  • 電子工学および電気工学

フィンガープリント

「Thermomagnetic convection of ferrofluid in an enclosure channel with an internal magnetic field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル