抄録
This paper discusses three approaches for combining an efficient LR parser and phoneme-context-dependent HMMs and compares them through continuous speech recognition experiments. In continuous speech recognition, phoneme-context-dependent allophonic models are considered very helpful for enhancing the recognition accuracy. They precisely represent allophonic variations caused by the difference in phoneme-contexts. With grammatical constraints based on a context free grammar(CFG), a generalized LR parser is one of the most efficient parsing algorithms for speech recognition. Therefore, the combination of allophonic models and a generalized LR parser is a powerful scheme enabling accurate and efficient speech recognition. In this paper, three phoneme-context-dependent LR parsing algorithms are proposed, which make it possible to drive allophonic HMMs. The algorithms are outlined as follows: (1) Algorithm for predicting the phonemic context dynamically in the LR parser using a phoneme-context-independent LR table. (2) Algorithm for converting an LR table into a phoneme-context-dependent LR table. (3) Algorithm for converting a CFG into a phoneme-context-dependent CFG. This paper also includes discussion of the results of recognition experiments, and a comparison of performance and efficiency of these three algorithms.
本文言語 | English |
---|---|
ページ(範囲) | 29-37 |
ページ数 | 9 |
ジャーナル | IEICE Transactions on Information and Systems |
巻 | E76-D |
号 | 1 |
出版ステータス | Published - 1993 1月 1 |
外部発表 | はい |
ASJC Scopus subject areas
- ソフトウェア
- ハードウェアとアーキテクチャ
- コンピュータ ビジョンおよびパターン認識
- 電子工学および電気工学
- 人工知能