Three-dimensional dose-distribution measurement of therapeutic carbon-ion beams using a ZnS scintillator sheet

Katsunori Yogo*, Masato Tsuneda, Ryo Horita, Hikaru Souda, Akihiko Matsumura, Hiromichi Ishiyama, Kazushige Hayakawa, Tatsuaki Kanai, Seiichi Yamamoto

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The accurate measurement of the 3D dose distribution of carbon-ion beams is essential for safe carbon-ion therapy. Although ionization chambers scanned in a water tank or air are conventionally used for this purpose, these measurement methods are time-consuming. We thus developed a rapid 3D dose-measurement tool that employs a silver-activated zinc sulfide (ZnS) scintillator with lower linear energy transfer (LET) dependence than gadolinium-based (Gd) scintillators; this tool enables the measurement of carbon-ion beams with small corrections. A ZnS scintillator sheet was placed vertical to the beam axis and installed in a shaded box. Scintillation images produced by incident carbon-ions were reflected with a mirror and captured with a charge-coupled device (CCD) camera. A 290 MeV/nucleon mono-energetic beam and spread-out Bragg peak (SOBP) carbon-ion passive beams were delivered at the Gunma University Heavy Ion Medical Center. A water tank was installed above the scintillator with the water level remotely adjusted to the measurement depth. Images were recorded at various water depths and stacked in the depth direction to create 3D scintillation images. Depth and lateral profiles were analyzed from the images. The ZnS-scintillator-measured depth profile agreed with the depth dose measured using an ionization chamber, outperforming the conventional Gd-based scintillator. Measurements were realized with smaller corrections for a carbon-ion beam with a higher LET than a proton. Lateral profiles at the entrance and the Bragg peak depths could be measured with this tool. The proposed method would make it possible to rapidly perform 3D dose-distribution measurements of carbon-ion beams with smaller quenching corrections.

本文言語English
ページ(範囲)825-832
ページ数8
ジャーナルJournal of radiation research
62
5
DOI
出版ステータスPublished - 2021 9月 1
外部発表はい

ASJC Scopus subject areas

  • 放射線
  • 放射線学、核医学およびイメージング
  • 健康、毒物学および変異誘発

フィンガープリント

「Three-dimensional dose-distribution measurement of therapeutic carbon-ion beams using a ZnS scintillator sheet」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル