Throughput Prediction Using Recurrent Neural Network Model

Bo Wei, Mayuko Okano, Kenji Kanai, Wataru Kawakami, Jiro Katto

研究成果: Conference contribution

抄録

To ensure good quality of experience for user when transmitting video content, throughput prediction can contribute to the selection of proper bitrate. In this paper, we propose a throughput prediction method with recurrent neural network (RNN) model. Experiments are conducted to evaluate the methods, and the results indicate that proposed method can decrease the prediction error by a maximum of 29.39% compared with traditional methods.

本文言語English
ホスト出版物のタイトル2018 IEEE 7th Global Conference on Consumer Electronics, GCCE 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ88-89
ページ数2
ISBN(電子版)9781538663097
DOI
出版ステータスPublished - 2018 12 12
イベント7th IEEE Global Conference on Consumer Electronics, GCCE 2018 - Nara, Japan
継続期間: 2018 10 92018 10 12

出版物シリーズ

名前2018 IEEE 7th Global Conference on Consumer Electronics, GCCE 2018

Other

Other7th IEEE Global Conference on Consumer Electronics, GCCE 2018
CountryJapan
CityNara
Period18/10/918/10/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering
  • Safety, Risk, Reliability and Quality
  • Instrumentation

フィンガープリント 「Throughput Prediction Using Recurrent Neural Network Model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル