Topological degree for (S)+-mappings with maximal monotone perturbations and its applications to variational inequalities

Jun Kobayashi, Mitsuharu Otani*

*この研究の対応する著者

    研究成果: Article査読

    18 被引用数 (Scopus)

    抄録

    This paper is concerned with the topological degree for mappings of class (S)+ with maximal monotone perturbations.Several results and remarks concerning the evaluation of this degree are given. In particular, it is shown that the local degree for the generalized gradient of nonsmooth functional at the local minimizer is equal to one.As applications, two examples of elliptic variational inequalities are given, where the multiple existence of solutions is discussed.

    本文言語English
    ページ(範囲)147-172
    ページ数26
    ジャーナルNonlinear Analysis, Theory, Methods and Applications
    59
    1-2
    DOI
    出版ステータスPublished - 2004 10

    ASJC Scopus subject areas

    • 分析
    • 応用数学
    • 数学 (全般)

    フィンガープリント

    「Topological degree for (S)+-mappings with maximal monotone perturbations and its applications to variational inequalities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル