Topology optimisation of a porous unit cell in a fluid flow considering Forchheimer drag

Akihiro Takezawa*, Xiaopeng Zhang, Takuo Tanaka, Mitsuru Kitamura

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

When the Reynolds number exceeds approximately 10, drag from porous media becomes nonlinear and cannot be handled by Darcy's theory. The Darcy–Forchheimer law, which considers drag through porous media as a quadratic function, covers this region up to the Reynolds number of the order (Formula presented.). In this research, we study the optimal shape of a porous unit cell based on this law and topology optimisation. Darcy's permeability and Forchheimer's quadratic drag term are calculated based on the averaging theorem and finite element method. The topology optimisation method is based on classical flow channel optimisation. The pressure drop is considered as the objective function of topology optimisation. By changing the input flow velocity in cell model analysis, the optimal shape becomes accustomed to the specified flow speed. We derive 2D and 3D optimal cell shapes for both low and high velocity regions.

本文言語English
ページ(範囲)50-60
ページ数11
ジャーナルInternational Journal of Computational Fluid Dynamics
34
1
DOI
出版ステータスPublished - 2020 1 2
外部発表はい

ASJC Scopus subject areas

  • 計算力学
  • 航空宇宙工学
  • 凝縮系物理学
  • エネルギー工学および電力技術
  • 材料力学
  • 機械工学

フィンガープリント

「Topology optimisation of a porous unit cell in a fluid flow considering Forchheimer drag」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル