Torque generation in F 1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice

Ayako Kohori, Ryohei Chiwata, Mohammad Delawar Hossain, Shou Furuike, Katsuyuki Shiroguchi, Kengo Adachi, Masasuke Yoshida, Kazuhiko Kinosita

研究成果: Article

22 引用 (Scopus)

抜粋

F 1-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α 3β 3 subunits. The amino and carboxyl termini of the γ rotor form a coiled coil of α-helices that penetrates the stator cylinder to serve as an axle. Crystal structures indicate that the axle is supported by the stator at two positions, at the orifice and by the hydrophobic sleeve surrounding the axle tip. The sleeve contacts are almost exclusively to the longer carboxyl-terminal helix, whereas nearly half the orifice contacts are to the amino-terminal helix. Here, we truncated the amino-terminal helix stepwise up to 50 residues, removing one half of the axle all the way up and far beyond the orifice. The half-sliced axle still rotated with an unloaded speed a quarter of the wild-type speed, with torque nearly half the wild-type torque. The truncations were made in a construct where the rotor tip was connected to a β-subunit via a short peptide linker. Linking alone did not change the rotational characteristics significantly. These and previous results show that nearly half the normal torque is generated if rotor-stator interactions either at the orifice or at the sleeve are preserved, suggesting that the make of the motor is quite robust.

元の言語English
ページ(範囲)188-195
ページ数8
ジャーナルBiophysical Journal
101
発行部数1
DOI
出版物ステータスPublished - 2011 7 6

ASJC Scopus subject areas

  • Biophysics

フィンガープリント Torque generation in F <sub>1</sub>-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Kohori, A., Chiwata, R., Hossain, M. D., Furuike, S., Shiroguchi, K., Adachi, K., Yoshida, M., & Kinosita, K. (2011). Torque generation in F 1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophysical Journal, 101(1), 188-195. https://doi.org/10.1016/j.bpj.2011.05.008